RELATIONSHIPS BETWEEN
 STRUCTURE AND CARBONYL STRETCHING FREQUENCIES OF THE β-LACTAM RING AND THE
 7-ACYLAMINO GROUP IN 1-THIAAND 1-OXA-CEPHEM ANTIBIOTICS. IMPORTANCE OF THE BENDING
 ANGLE OF THE C(4)-N(5) BOND
 FROM PLANE C(6)-N(5)-C(8)
 IN THE β-LACTAM RING

Sir:
The useful antibacterial activity arising from the β-lactam ring in β-lactam antibiotics has attracted much attention ${ }^{11}$. The β-lactam IR stretching frequency (β-lactam $\nu_{\mathrm{c}=0}$) has been regarded as an important index for investigating the struc-ture-activity relationship of the β-lactam antibiotics ${ }^{2 \sim 5}$. However, only a few studies have focused attention on the change in the β-lactam $\nu_{\mathrm{c}=0}$ in the cases of replacement of the 7α-hydrogen atom by a methoxy group and that of the sulfur by an oxygen atom at the 1 -position of cephalo-

	A	X	Y	Z	R
$\mathbf{1}$	O	H	Tet	$\mathrm{COOCHPh}_{2}$	Ph
$\mathbf{2}$	S	H	Tet	$\mathrm{COOCHPh}_{2}$	Ph
$\mathbf{3}$	O	OMe	Tet	$\mathrm{COOCHPh}_{2}$	Ph
$\mathbf{4}$	S	OMe	Tet	$\mathrm{COOCHPh}_{2}$	Ph
$\mathbf{9}$	O	H	Tet	COONa	$\mathrm{CH}_{2} \mathrm{Ph}$
$\mathbf{1 0}$	S	H	Tet	COONa	$\mathrm{CH}_{2} \mathrm{Ph}$
$\mathbf{1 1}$	O	OMe	Tet	COONa	$\mathrm{CH}_{2} \mathrm{Ph}$
$\mathbf{1 2}$	S	OMe	Tet	COONa	$\mathrm{CH}_{2} \mathrm{Ph}$
$\mathbf{1 3}$	O	H	H	COONa	$\mathrm{CH}_{2} \mathrm{Ph}$
$\mathbf{1 4}$	S	H	H	COONa	$\mathrm{CH}_{2} \mathrm{Ph}$
$\mathbf{1 5}$	O	OMe	H	COONa	$\mathrm{CH}_{2} \mathrm{Ph}$
$\mathbf{1 6}$	S	OMe	H	COONa	$\mathrm{CH}_{2} \mathrm{Ph}$
$\mathbf{1 7}$	O	H	Tet	$\mathrm{COOCHPh}_{2}$	$\mathrm{CH}_{2} \mathrm{Ph}$
$\mathbf{1 8}$	S	H	Tet	COOCHPh	$\mathrm{CH}_{2} \mathrm{Ph}$
$\mathbf{1 9}$	O	OMe	Tet	$\mathrm{COOCHPh}_{2}$	$\mathrm{CH}_{2} \mathrm{Ph}$
$\mathbf{2 0}$	S	OMe	Tet	COOCHPh	$\mathrm{CH}_{2} \mathrm{Ph}$
$\mathbf{2 5}$	S	H	H	COMe	$\mathrm{CH}_{2} \mathrm{OPh}$
$\mathbf{2 6}$	S	OMe	H	COOCMe_{3}	$\mathrm{CH}_{2} \mathrm{Ph}$

sporin antibiotics ${ }^{5}$. In the preceding paper ${ }^{8)}$, we presented some β-lactam $\nu_{\mathrm{c}=0}$ data related to these points, comparing them with ${ }^{13} \mathrm{C}$ NMR and the pseudo-first-order rates of the 3 -cephem β lactam ring opening at pH 10 and $35^{\circ} \mathrm{C}, \mathrm{k}_{\text {obs }}$. Further detailed examinations of the β-lactam $\nu_{\mathrm{C}=0}$ of several cephalosporin derivatives have revealed that the $\nu_{\mathrm{c}=\mathrm{o}}$ values can be correlated with the geometrical structure parameters obtained from X-ray analyses ${ }^{3,7 \sim 11)}$. In order to explain these results theoretically, we also carried out CNDO/2 calculations for simple model compounds.

Table 1 lists the IR and NMR spectral data of the cephalosporin derivatives together with the available structural parameters ${ }^{3,7 \sim 11)}$. The β lactam $\nu_{\mathrm{c}=0}$ shifts to a higher wavenumber with an increase in bending angle θ when the 1 -sulfur atom is replaced by an oxygen atom, but to a lower wavenumber with a decrease in θ when the 7α-hydrogen atom is substituted by a methoxy group. An important factor for these shifts is considered to be a resonance change such as

	A	X	Y	Z	R
5	O	H	Tet	${ }^{\mathrm{H}} \mathrm{COOCHPh}_{2}$	Ph
6	S	H	Tet	${ }^{\mathrm{H}} \mathrm{COOCHPh}_{2}$	Ph
7	O	OMe	Tet	${ }^{\mathrm{H}} \mathrm{COOCHPh}_{2}$	Ph
8	S	OMe	Tet	${ }^{\mathrm{H}} \mathrm{COOCHPh}_{2}$	Ph
21	O	H	Tet	$\stackrel{\mathrm{H}}{\mathrm{COOCHPh}_{2}}$	$\mathrm{CH}_{2} \mathrm{Ph}$
22	S	H	Tet	${ }^{\mathrm{H}} \mathrm{COOCHPh}_{2}$	$\mathrm{CH}_{2} \mathrm{Ph}$
23	O	OMe	Tet	$\stackrel{\mathrm{H}}{\mathrm{COOCHPh}_{2}}$	$\mathrm{CH}_{2} \mathrm{Ph}$
24	S	OMe	Tet	${ }^{\mathrm{H}} \mathrm{COOCHPh}_{2}$	$\mathrm{CH}_{2} \mathrm{Ph}$
27	S	H	H	$\stackrel{\mathrm{H}}{\mathrm{COOH}}$	$\mathrm{CH}_{2} \mathrm{OPh}$
28	S	COOMe	H	$\stackrel{\mathrm{COOMe}}{\stackrel{\text { COOMe }}{ }}$	$\mathrm{CH}_{2} \mathrm{OPh}$

Table 1. IR and ${ }^{13} \mathrm{C}$ NMR spectral data and structural parameters of cephalosporin derivatives. ${ }^{a}$

IR stretching frequency, $\nu_{\mathrm{C}=0}\left(\mathrm{~cm}^{-1}\right)^{c}$							${ }^{13} \mathrm{C} \mathrm{NMR}{ }^{\text {d }}$		Structural parameters ${ }^{\text {b }}$				
Compound No.	β-Lactam	7-Amide	Compound No.	β-Lactam	Compound No.	β-Lactam	Compound No.	$\delta_{\text {C(8) }}$	Compound No.	$\theta\left({ }^{\circ}\right)^{e}$	$\phi_{1}\left({ }^{\circ}\right)^{f}$	$\phi_{2}\left({ }^{\circ}\right)^{g}$	Reference
1	1797.1	1676.0	9	1778.4	13	1769.1	17	168.5	17	29.6	138.7	-1.8	11)
2	1791.0	1678.0	10	1772.7	14	1763.7	18	165.1	25	20.5	118.9	2.8	7)
3	1787.1	1688.5	11	1772.0	15	1766.7	19	162.5	19	21.9	74.8	-12.2	8)
4	1781.5	1684.5	12	1768.0	16	1762.3	20	160.7	26	14.5	69.7	-7.6	9)
5	1793.5	1676.2					21	167.1					
6	1781.2	1675.6					22	163.9	27	6.7	98.4	-1.6	3)
7	1789.1	1685.6					23	162.1					
8	1778.0	1681.6					24	160.3	28^{h}	-3.0	71.8	-6.9	10)

a Compounds $\mathbf{1 \sim 8}$ were kindly supplied by Sendo et al. ${ }^{17 \text {) }}$

${ }^{b}$ Data on salts are excluded from this list because strong interaction may exist in crystals.
c IR spectra were recorded on a JASCO DS-403G grating spectrometer calibrated in a usual manner. Compounds $\mathbf{1} \sim \mathbf{8}$ were dissolved in CHCl_{3} at $c a$. 0.002 m (cell length 0.5 cm). Accuracies of $\nu_{\mathrm{O}=0}$ are within $\pm 1.0 \mathrm{~cm}^{-1}$. Data on compounds $\mathbf{9} \sim \mathbf{1 6}$ are taken from reference 6 .
${ }^{d} \quad{ }^{13} \mathrm{C}$ NMR spectra were recorded and assigned as reported previously ${ }^{66}$.
e Bending angle of $\mathbf{C}(4)$ from plane $C(6) N(5) C(8)$.
f Torsion angle $\mathrm{C}(6) \mathrm{C}(7) \mathrm{N}(10) \mathrm{C}(11)$.

- Torsion angle $\mathrm{C}(7) \mathrm{N}(10) \mathrm{C}(11) \mathrm{O}(12)$.
${ }^{h}$ Data for this molecule were used because of the lack of X-ray crystallographic data on appropriate analogous compounds.

Table 2. Bond lengths (\AA), bond angles $\left({ }^{\circ}\right)^{3,7 \sim 11,13 \sim 18)}$ and model molecules used in CNDO/2 calculations.

${ }^{a}$ The assumptions were made that all atoms of the β-lactam ring lie on the same plane and that the atoms connected to the β-lactam ring are located in the bisectional plane of the respective endocyclic bond angle.
${ }^{b}$ The H_{a} atom of the Me group is placed in the bisectional plane of angle $\mathrm{C}(2) \mathrm{N}(1) \mathrm{C}(4)$, and the plane of the $\mathrm{CH}=\mathrm{CH}_{2}$ group is perpendicular to the bisectional plane.
c Torsion angle $\mathrm{C}(4) \mathrm{C}(3) \mathrm{CO}$ was adopted as the one-half value of the dihedral angle between $\mathrm{C}(4) \mathrm{C}(3) \mathrm{O}$ and $\mathrm{HC}(3) \mathrm{O}$, and the geometry of the methyl moiety was assumed to be of the exact staggered form.
${ }^{d}$ Torsion angles $\mathrm{N}(1) \mathrm{C}(2) \mathrm{OC}$ and $\mathrm{N}(1) \mathrm{C}(2) \mathrm{SC}$ were adopted as the one-half value of the dihedral angle between $\mathrm{N}(1) \mathrm{C}(2) \mathrm{B}$ and $\mathrm{HC}(2) \mathrm{B}$, the geometries of Me moieties of the OMe and SMe groups were assumed to be the exact staggered forms, and the torsion angle $\mathrm{C}(2) \mathrm{SCC}$ of the $\mathrm{SCH}=\mathrm{CH}_{2}$ group was assumed to be equal to 0°.

Fig. 1. Relationships between β-lactam $\nu_{\mathrm{C}=0}$ and $\cos \theta$.

 pressed if θ increases. The increase in θ strengthens the double-bond character of the β-lactam
carbonyl group, causing a shift to a higher wavenumber of $\nu_{\mathrm{C}=0}$. Since an excellent linear relationship (correlation coefficient, $\mathrm{r}=1.00$) was found between $\cos \theta$ and the π-bond order of the β-lactam $\mathrm{C}=\mathrm{O}$ bond obtained by the $\mathrm{CNDO} / 2$ calculation in the model molecule (I) shown in Table 2, the experimental $\nu_{\mathrm{C}=0}$ values were plotted against $\cos \theta$. As shown in Fig. 1, the plots give good linear relationships. This suggests that the effect of the change in θ is more important than any other electronic effect due to an atom at the 1 -position, a 7α-methoxy group, and a Δ^{3} double bond.

We found that the substitution of the 7α hydrogen atom by a methoxy group is attended by a decrease in torsion angle ϕ_{1}. This may be ascribed to a decrease in θ in the 7α-methoxysubstituted compounds, because the repulsion increases between a 7β-amide group and an atom at the 1 -position, causing transformation of the six-membered ring. This repulsion influences the geometry of the 7β-amide group. As expected, the amide $\nu_{\mathrm{c}=0}$ shifts to a higher wavenumber with

Table 3. Bond energies of $\mathrm{C}=\mathrm{O}$ bond ($\mathrm{E}_{\mathrm{C}=0}$) and π-electron densities on the carbon atom of $\mathrm{C}=\mathrm{O}$ bond (D_{π}) by $\mathrm{CNDO} / 2$ calculations in model molecules (I)~(IV).

| Compound | $\mathrm{E}_{\mathrm{C}=0}(\mathrm{I})$
 a.v. | $\mathrm{E}_{\mathrm{C}=0}(\mathrm{II})$
 a.v. | $\mathrm{E}_{\mathrm{C}=0}(\mathrm{III})$
 a.v. | $\mathrm{E}_{\mathrm{C}=0}(\mathrm{IV})$
 a.v. | Compound | $\mathrm{D}_{\pi}(\mathrm{I})$ | $\mathrm{D}_{\pi}(\mathrm{II})$ | $\mathrm{D}_{\pi}(\mathrm{III})$ | $\mathrm{D}_{\pi}(\mathrm{IV})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1.60631 | 1.60805 | 1.60805 | 1.60568 | $\mathbf{1 7}$ | 0.79532 | 0.79802 | 0.79802 | 0.79933 |
| $\mathbf{2}$ | 1.60438 | 1.60643 | 1.60643 | 1.60414 | $\mathbf{1 8}$ | 0.79661 | 0.79988 | 0.79988 | 0.80185 |
| $\mathbf{3}$ | 1.60456 | 1.60667 | 1.60249 | 1.60089 | $\mathbf{1 9}$ | 0.79618 | 0.79970 | 0.80767 | 0.80780 |
| $\mathbf{4}$ | 1.60335 | 1.60535 | 1.60128 | 1.59947 | $\mathbf{2 0}$ | 0.79688 | 0.79993 | 0.80810 | 0.80948 |
| $\mathbf{6}$ | 1.60249 | 1.60249 | 1.60249 | 1.60285 | $\mathbf{2 2}$ | 0.79699 | 0.79699 | 0.79699 | 0.79969 |
| $\mathbf{8}$ | 1.60213 | 1.60213 | 1.59829 | 1.59858 | $\mathbf{2 4}$ | 0.79657 | 0.79657 | 0.80459 | 0.80658 |
| r^{a} | 0.96 | 0.89 | 0.95 | 0.86 | | 0.70 | 0.01 | 0.75 | 0.83 |

a Correlation coefficient of relationships between $\mathrm{E}_{\mathrm{C}}^{1 / 2}=\mathrm{o}$ and β-lactam $\nu_{\mathrm{C}=0}$ and D_{π} and δ_{C} of the corresponding compounds shown in Table 1.
increasing torsion angle $\left|\phi_{2}\right|$, when the 7α-hydrogen atom is substituted by a methoxy group. The increase in $\left|\phi_{2}\right|$ suppresses the resonance in the amide moiety, and therefore strengthens the double-bond character of the amide $\mathrm{C}=\mathrm{O}$.

The CNDO/2 calculations were carried out using the program of Pople and Beveridge ${ }^{12}$). On the basis of the available electron-diffraction and X-ray analysis data on analogous compounds ${ }^{8,7 \sim 1,13 \sim 15)}$, we adopted the geometries of model molecules (I) $\sim(I V)$ shown in Table 2. For the calculations for molecules (I) $\sim(I V)$, the θ, the θ and Y , the θ, Y, and X , and the θ, Y, X , and B listed in Table 1 were taken into account, respectively; here, Y is $\mathrm{CH}=\mathrm{CH}_{2}$ for $\mathbf{1 \sim 4}$ and CH_{3} for $\mathbf{6}$ and $\mathbf{8}$; X is H for $\mathbf{1 , 2}$, and $\mathbf{6}$ and OCH_{3} for $\mathbf{3 , 4} 4$ and $\mathbf{8}$; and B is OCH_{3} for $\mathbf{1}$ and $\mathbf{3}, \mathrm{SCH}_{3}$ for $\mathbf{2}$ and $\mathbf{4}$, and $\mathrm{SCH}=\mathrm{CH}_{2}$ for 6 and 8. The $\mathrm{E}_{\mathrm{C}=0}$ and D_{π} values obtained from the $\mathrm{CNDO} / 2$ calculations are given in Table 3, where $\mathrm{E}_{\mathrm{o}=\mathrm{o}}$ is the bond energy of the $C=O$ bond and D_{π} is the π-electron density on the carbon atom of the $\mathrm{C}=\mathrm{O}$ bond. When the potential energy is represented by the Morse function, the force constant is proportional to the dissociation energy. Because the dissociation energy of the $\mathrm{C}=\mathrm{O}$ bond is primarily proportional to the $\mathrm{E}_{\mathrm{C}=0}$, the $\mathrm{E}_{\mathrm{C}=0}^{1 / 2}$ is proportional to the $\nu_{\mathrm{C}=0}$. According to Pople's theory ${ }^{18)}$, the ${ }^{13} \mathrm{C}$ chemical shift, δ_{C}, is primarily proportional to the π-electron density. Thus, regression analysis was carried out between the β-lactam $\nu_{\mathrm{C}=0}$ and $\mathrm{E}_{\mathrm{C}}^{1 / 2}=0$ values and between the δ_{C} of $\mathrm{C}(8)$ and D_{π} values. The correlation coefficients, r, obtained are given in Table 3. The r values of the β-lactam $\nu_{\mathrm{C}=0}$ vs. $\mathrm{E}_{\mathrm{C}=0}^{1 / 2}$ correlations are more than 0.86 for all model molecules (I)~ (IV). This suggests theoretically that the change
in β-lactam $\nu_{\mathrm{C}=0}$ is primarily governed by θ, as pointed out experimentally above. However, the r values of the δ_{C} vs. D_{π} correlations are respectively $0.70,0.01,0.75$ and 0.83 for model molecules (I) $\sim(\mathrm{IV})$. This suggests that the electronic effects due to the X and B moieties are of importance in this case. These results should be useful when considering the antibacterial reactivity of β-lactam ring in cephem derivatives ${ }^{\beta}$.

Acknowledgments

We thank Drs. W. Nagata, M. Yoshioka, M. NARISADA and Y. Sendo for providing us with the samples, and Drs. M. Shiro and T. Sato for helpful discussions on the X-ray data.

> | \quad Mamoru Takasuka* |
| :--- |
| Junko Nishikawa |
| Kazuo Tori |
| Shionogi Research Laboratories |
| Shionogi \& Co., Ltd. |
| Fukushima-ku, Osaka, |
| 553 Japan |

(Received September 18, 1982)

References

1) Flynn, E. H.: Cephalosporins and Penicillins: Chemistry and Biology. Academic Press, New York, N. Y., 1972
2) Morin, R. B.; B. G. Jackson, R. A. Mueller, E. R. Lavagnino, W. B. Scanlon \& S. L. Andrews: Chemistry of cephalosporin antibiotics. XV. Transformations of penicillin sulfoxide. A synthesis of cephalosporin compounds. J. Am. Chem. Soc. 91: 1401~1407,

1969
3) Sweet, R. M. \& L. F. Dahl: Molecular architecture of the cephalosporins. Insights into biological activity based on structural investigations. J. Am. Chem. Soc. 92: 5489~5507, 1970
4) Indelicato, J. M.; T. T. Norvillas, R. R. Pfeiffer, W. J. Wheeler \& W. L. Wilham: Substituent effects upon the base hydrolysis of penicillins and cephalosporins. Competitive intramolecular nucleophilic amino attack in cephalosporins. J. Med. Chem. 17: 523~527, 1974
5) Murakami, K.; M. Takasuka, K. Motokawa \& T. Yoshida: 1-Oxacephalosporins. Enhancement of β-lactam reactivity and antibacterial activity. J. Med. Chem. 24: 88~93, 1980
6) Nishikawa, J.; K. Tori, M. Takasuka, H. Onoue \& M. Narisada: Structure-reactivity relationships of cephem analogs studied by car-bon-13 NMR and IR spectroscopies. Replacement effects of sulfur with oxygen or methylene at the 1 -position and introduction effects of 7α methoxy group. J. Antibiotics 35: 1724~1728, 1982
7) Domiano, P. \& M. Nardelli: Crystal and molecular structure of 4 -acetyl-3-methyl- 7β-phenoxy-acetamide- Δ^{3}-cephem. J. Chem. Soc. Perkin II 1978: 1082~1087, 1978
8) Shiro, M.; H. Nakai, H. Onoue \& M. NariSADA: Structure of a 7α-methoxy-1-oxacephem: Diphenylmethyl 7α-methoxy-3-(1-methyl- 1 H -tetrazol-5-ylthio)methyl-7 - -phenyl-acetamide-1-
oxa-1-dethia-3-cephem-4-carboxylate. Acta Cryst. B36: 3137~3139, 1980
9) Applegate, H. E.; J. E. Dolfini, M. S. Puar, W. A. Slusarchyk \& B. Toeplitz: Synthesis of 7α-methoxycephalosporins. J. Org. Chem. 39: 2794~2796, 1974
10) Paulus, von E. F.: $(5 S R, 6 S R, 7 R S)$-7-Phenyl-acetamino-3-methyl-4,4,7-trimethoxycarbonyl-Δ^{2}-cephem. Acta Cryst. B33: 108~111, 1977
11) Shiro, M.; H. Nakai, H. Onoue \& M. NariSADA: Structure of a 1-oxacephem: Diphenylmethyl 3-(1-methyl-1 H -tetrazol-5-ylthio)-methyl7β-phenylacetamido-1-oxa-1-dethia-3-cephem-4carboxylate. To be published.
12) Pople, J. A. \& D. L. Beveridge: Approximate Molecular Orbital Theory. McGraw-Hill, New York, N. Y., 1970
13) Kuchitsu, K.: Calculation of the average structure of ethylene. J. Chem. Phys. 44: 906~911, 1966
14) Samdal, S. \& H. M. Seip: On the structure of gaseous methyl vinyl sulphide. Acta Chem. Scand. 25: 1903~1904, 1971
15) Table of Interatomic Distances and Configuration in Molecules and Ions. Ed. L. E. Sutton, The Chemical Society, London, 1965
16) Pople, J. A.: The theory of carbon chemical shifts in N.M.R. Mol. Phys. 7: 301~306, 1964
17) Sendo, Y.; M. Yoshioka \& W. Nagata: $\Delta^{3}-\Delta^{2}$ Isomerisation in cephems and their 1-oxa congeners. Heterocycles 17: 231~233, 1982

